

 6

Chapter 2
Background

2.1 Application Layer Attacks

Application protocols like HTTP, SMTP, POP3, DNS, IMAP and FTP are well

known services. These protocols were defined in individual RFC for communication

with each other. Application firewall should realize their features and identities these

behaviors in order to inspecting traffic. Deep inspection is kind of mechanism which

works as state machine that examines the content in the application layer. The inspect

rules are pattern format, string length, or parameter types. If there are any conflicts,

firewall can take actions that record as log or signal warnings [10].

Today, more critical mission applications and data pass through the HTTP

Protocol. Unfortunately, many of the features make browsers so convenient also make

them incredibly insecure. It is often relatively easy for a hacker to find and change

hidden fields that indicate a product prices, a hacker can change the parameters of a

CGI script to search for a password file instead of a product price. If some

components of a web application (such as search functionality) are not integrated and

configured correctly, the site could be subject to buffer-overflow attacks that could

grant a hacker access to administrative pages. Current web application coding

practices largely ignore some of the most basic security measures required to keep a

company and its data safe from unauthorized access.

Regarding to well known GPL IDS named as Snort [11]. It features rules based

logging to perform content pattern matching and detect a variety of attacks and probes,

such as buffer overflows, stealth port scans, CGI attacks, SMB probes, and much

 7

more. According to its rules approximately 1103 rules are collected which prefix have

“web” in total 3201 rules. If SQL rules, backdoor rules, and all the other rules directly

associated with web protocol are counted together. As a result, more than 2000 rules

are under suspicion, which could be threat to server or client through web traffic.

Not only predefined suspicious activity or patterns across around Internet and

exploit these weaknesses, several widely spread worms, Code Red [12], Blaster [13],

Nimda [14], and SQL Slammer [15], have caused substantial damages.

Lots of organizations are established as helping users understand the typical web

security profiles. Open Web Application Security Project (OWASP, www.owasp.org)

[16] is an open source reference point for system architects, developers, vendors,

consumers and security professionals involved in the security of web applications and

web services. Based on [17], the most common vulnerabilities are listed and described

in the following.

Buffer Overflow

Buffer overflow vulnerability is one of the most common security flaws. It is an

attack technique that overruns the memory. For instance, an application might accept

ten-digit numbers, if twenty-digit numbers enters, the server often result in a core

dump, which reveals information about the memory of the web server. Even more

threatening, a hacker who disables the application could upload code to be executed

by the server. Viruses such as Code Red, Slammer are results of buffer overflow

attacks.

Cookie Poisoning Attack

Cookies are introduced to allow session management and are heavily used by

 8

most Web applications. Cookie poisoning is a kind of attacks, which alters the value

of a cookie on the client side prior to a request to the server. Malicious users could

also change cookies by either using an interception proxy or directly modifying a file

on a local storage to falsify identity, bypassing server’s authentication. It makes

possibly that the hacker to impersonate authenticated user and review any and all

information that the authenticated user would review. Shoplifting is one of the most

well known Cookie poisoning attacks.

Cross Site Scripting (XSS)

XSS is a special form of invalidated input attack. A hacker forces a Web server

to serve JavaScript that was not sourced from the Web site administrators. The most

common place to execute a cross-site scripting attack is a bulletin board or auction

posting, where users can submit comments to be viewed by other users. This

malicious JavaScript can be used to steal a user’s cookies and even compromise a

user’s computer. Attacker’s goal is to steal cookies from the client, then impersonate

the client.

SQL Injection

SQL Injection is a technique where an attacker creates, alters, or inserts existing

SQL commands to gain access to unintended data, or to gain the ability to execute

system level commands on the host. Since most applications simply translate the form

data into a SQL query to the application’s database, this activity can expose and cause

unintended behavior by the application. The hacker inputs SQL commands into web

page forms or parameters. The attacker may be able to run any SQL commands on

your database that may lead to compromise of the database server.

 9

Parameter Tampering

Conceptually, parameters are included in the URL strings send client-specific

information to the Web service so that a certain remote operation can be executed.

Parameter tampering involves manipulating URL strings and modifying parameters to

retrieving unauthorized information or changing the data. A classic example of

parameter tampering is to change values in form fields. These values can be free-text

or numbers in text-box or hidden field. An attack may tamper these values such as

user account or prices.

A few above examples of the types of attacks are introduced that the professional

hackers may attempt to use. Undoubtedly, application- level attacks would lead to

issues of expense, manageability, performance, and even down-time. But, there was

no viable alternative and business continuity had to be ensured, so complicated

security systems were implemented. The systems continue to evolve and grow

increasingly complex as components are added. The network detection systems are

suitable and worth to be deployed considering their security benefits.

Intrusion detection is a security technology that attempts to identify and isolate

intrusions against computer systems. Different IDSes have differing classifications of

intrusions. For some IDSes handle URL attacks, they must inspect the HTTP URL

field for malicious attacks by using two most popular inspection methodologies,

pattern matching and protocol analysis.

2.2 Secure Socket Layer Protocol

The Secure Socket Layer protocol, in short, is intended to provide a practical,

application- layer, widely applicable connection oriented mechanism for Internet

client/server communications security. The IETF Transport Layer Security working

 10

group is also using SSL 3.0 as a base for their standards efforts [9] [18]. The SSL

protocol is designed to prevent eavesdropping, tampering, or message forge. To

obtain these objectives it uses a combination of public key and symmetric key

cryptography algorithm and digital certificates (X.509). The detailed description of

the protocol can be found in [8].

The SSL protocol stack was shown as Figure 2 and fundamentally has two

phases of operation: SSL record protocol and SSL handshake protocol. Layered above

the record layer is the SSL handshake protocol, a key exchange protocol initializes

and synchronizes cryptographic state at the two endpoints. After the key-exchange

protocol completes, sensitive application data can be sent via the SSL record layer.

Figure 2. The SSL protocol stack

A. SSL Record Protocol

The SSL record layer provides confidentiality, authenticity, and replay protection

over a connection-oriented reliable transport protocol such as TCP. It also

IP

TCP

SSL Record Protocol

SSL Handshake
Protocol

SSL Cipher
Change Spec

Protocol

SSL Alert
Protocol Applications

IP

TCP

SSL Record Protocol

SSL Handshake
Protocol

SSL Cipher
Change Spec

Protocol

SSL Alert
Protocol Applications

 11

decomposes large messages into fragments of size at most 16 KB in order to facilitate

message authentication. All records are compressed using the compression algorithm

defined in the current session state and protected using the encryption and MAC

(Message Authentication Code) algorithms defined in the current CipherSpec. Finally

encryption and MAC functions translate compressed units to encrypted data, ready to

be sent into TCP packet. This detail process of SSL record protocol is shown in

Figure 3.

Figure 3. SSL Record Protocol.

B. SSL Handshake Protocol

The handshake allows the server to authenticate itself to the client using

public-key techniques like RSA, and allows the client and the server to cooperate in

the creation of symmetric keys used for rapid encryption, decryption, and tamper

detection during the session that follows. Optionally, the handshake also allows the

client to authenticate itself to the server.

SSL negotiation is a nine-step process. They are described as follow.

ApplicationData

Appli catio nData

AppliAppliAppliAppli

HHAppliAppli

E9BD68

Fragment

Compress

MAC

Encrypt

ApplicationData

Appli catio nData

AppliAppliAppliAppli

HHAppliAppli

E9BD68

Fragment

Compress

MAC

Encrypt

 12

1. The client sends the server a Client Hello message. This hello message

contains the SSL version and the cipher suites the client can talk. The client

sends its maximum key length details at this time.

2. The server returns the Server Hello message with one of its own in which it

nominates the version of SSL and the ciphers and key lengths to be used in the

conversation, chosen from the choice offered in the Client Hello message.

3. The server sends its digital certificate to the client for inspection. Most modern

browsers automatically check the certificate (depending on configuration) and

warn the user if it's not valid. By valid we mean if it does not point to a

certification authority that is explicitly trusted or is out of date, etc.

4. The server sends a Server Done message as it has concluded the initial part of

the setup sequence. If the server claims to authenticate the client, then sends a

Certificate Request after sending its own certificate optionally.

5. The client generates asymmetric key and encrypts it using the server's public

key (cert). It then sends this message to the server.

6. The client sends a Change Cipher Spec message telling the server all future

communication should be with the new key. Optionally, it provides its

certificate to the server. On the other hand, the client sends a Certificate Verify

message in which it encrypts a known piece of plain text using its private key.

The server uses the client certificate to perform decryption operation. Then

ascertaining the client has the private key.

7. The client now sends a Finished message using the new key to determine if

the server is able to decrypt the message and the negotiation was successful.

8. The server sends a Change Cipher Spec message telling the client that all

future communications will be encrypted.

 13

9. The server sends its own Finished message encrypted using the key. If the

client can read this message then the negotiation is successfully completed.

Figure 4. SSL Full Handshake.

Two different handshake types can be distinguished: The full handshake and the

resume handshake. The full handshake is negotiated when a client establishes a new

SSL connection with the server, and requires the negotiation of the SSL handshake.

The resume handshake is negotiated when a client establishes a new HTTP

connection with the server but using an existing SSL connection. As the SSL session

ID is reused, the part of the SSL handshake negotiation can be avoided.

B.1. Full Handshake

The client sends a Client Hello message to which the server must respond with a

Server Hello message. The Client Hello and Server Hello messages establish the

following attributes: protocol version, session ID, cipher suite, and compression

method. Additionally, two random values are generated and exchanged. Following the

Client Server

3-way TCP Handshaking

Client Hello

Server Hello

Server Certificate

Server Key Exchange

Certificate Request (*)

Server Hello Done

Client Certificate (*)

Client Key Exchange

Certificate Verification (*)

Change Cipher Spec

Finish
Change Cipher Spec

Finish

Application Data

Client Server

3-way TCP Handshaking

Client Hello

Server Hello

Server Certificate

Server Key Exchange

Certificate Request (*)

Server Hello Done

Client Certificate (*)

Client Key Exchange

Certificate Verification (*)

Change Cipher Spec

Finish
Change Cipher Spec

Finish

Application Data

 14

hello messages, the server will send its certificate. If the server is authenticated, it

may request a certificate from the client. Now the server will send the Server Hello

Done message, indicating that the hello message phase of the handshake is complete.

The Client Key Exchange message is now sent. At this point, a Change Cipher Spec

message is sent by the client and then immediately sends the Finished message. In

response, the server will send its own Change Cipher Spec and Finished message. At

this point, the handshake is complete and the client and server may begin to exchange

application layer data. Figure 4 shows its full state and the star mark indicates

optional parameters.

B.2. Resume Handshake

The client sends a Client Hello message using the session ID of the session to be

resumed. The server then checks its session cache for a match. If a match is found,

and the server is willing to re-establish the connection under the specified session

state, it will send a Server Hello message with the same session ID value. At this point,

both client and server have to send Change Cipher Spec messages and proceed

directly to Finished messages. Once the re-establishment is complete, the client and

server may begin to exchange application layer data. If a session ID match is not

found, the server generates new session ID and the SSL client and server still perform

a full handshake. In [19], it shows that reusing cached SSL session keys can

significantly reduce client response time. Figure 5 shows the state of resume

handshake.

 15

Figure 5. SSL Resume Handshake.

A newer version of SSL protocol is named as Transport Layer Security Protocol

(TLS) [20]. The differences between SSL 3.0 and TLS are negligible. The SSL 3.0

protocol was slightly modified by an IETF workgroup and finally standardized in

1999 as TLS 1.0. Although TLS and SSL have subtle implementation differences,

application developers usually notice very little difference, and end users should see

no difference at all. TLS 1.0 and SSL 3.0 are not, however, interoperable. The most

significant difference is that TLS requires certain encryption algorithms that SSL does

not. A TLS server must “back down” to SSL 3.0 to interoperate with SSL-3.0 clients.

For the purpose of simplicity refer to both SSL and TLS as SSL in this study. A more

complete treatment of these protocols can be found in [20] [21] [22].

2.3 Attacks behind HTTPS

The most common services that put on the secure socket layers are HTTP and

Client Server

3-way TCP Handshaking

Client Hello

(Reuse Session ID)

Server Hello

Change Cipher Spec

Server Hello Done

Change Cipher Spec

Finish

Application Data

Client Server

3-way TCP Handshaking

Client Hello

(Reuse Session ID)

Server Hello

Change Cipher Spec

Server Hello Done

Change Cipher Spec

Finish

Application Data

3-way TCP Handshaking

Client Hello

(Reuse Session ID)

Server Hello

Change Cipher Spec

Server Hello Done

Change Cipher Spec

Finish

Application Data

 16

HTTPS. The HTTPS protocol performs all HTTP secure communications between a

browser and a web server.

HTTPS is the secure version of HTTP based on SSL protocol, the

communication protocol of the WWW [23]. The default TCP/IP port of HTTPS is 443.

However, HTTPS protocol produces more overheads than HTTP protocol because of

the computational costs associated with using SSL. A much more time consuming

activity is the public key encryption and decryption needed for protecting the

exchange of the private key. The private key encryption/decryption and secure

hashing functions are also quite expensive operations, and they all tend to make

secure transactions far slower than the unsecured ones. However, instead of using

plain text socket communication, HTTPS encrypts the session data using either a

version of the SSL/TLS protocol, thus ensuring reasonable protection from

eavesdroppers, and man in the middle attacks [24][25]. The level of protection

depends on the correctness of the implementation by the web browser and the server

software and the actual cryptographic algorithms supported.

 In the area of Web security, despite strong encryption on the browser-server

channel, Web users still have no assurance about what happens at the other end. New

vulnerabilities and exploits are dis covered continuously. Therefore, it is impossible to

be 100% certain that all weaknesses in a system had been addressed. As is often

pointed out within the security discipline, what we need is defense in depth and each

layer added must mean a stronger defense. According to a report published by

Infonetics Research [26], SSL traffic as a percentage of total network traffic will grow

from 41 percent in 2003 to 49 percent in 2004 in large corporate and government

organizations where SSL is used. Yet intrusion detection systems only examine

clear-text HTTP traffic and ignore the encrypted traffic. These threats will be invisible

by application firewalls as shown in Figure 6. The transaction and business operation

 17

were unable to be analyzed by detection engine and they look safety without

impacting network security. This leaves the most important and risk level traffic on

the network invisible to the primary security tools designed to identify and prevent

attacks.

Figure 6. Attack is invisible under encryption.

